# Difference between revisions of "Brahmagupta's Formula"

(category) |
m (→Proofs) |
||

(15 intermediate revisions by 10 users not shown) | |||

Line 1: | Line 1: | ||

− | '''Brahmagupta's | + | '''Brahmagupta's Formula''' is a [[formula]] for determining the [[area]] of a [[cyclic quadrilateral]] given only the four side [[length]]s. |

== Definition == | == Definition == | ||

− | Given a cyclic quadrilateral | + | Given a cyclic quadrilateral with side lengths <math>{a}</math>, <math>{b}</math>, <math>{c}</math>, <math>{d}</math>, the area <math>{K}</math> can be found as: |

− | < | + | <cmath>K = \sqrt{(s-a)(s-b)(s-c)(s-d)}</cmath> |

− | where the [[semiperimeter]] <math> | + | where <math>s=\frac{a+b+c+d}{2}</math> is the [[semiperimeter]] of the quadrilateral. |

+ | |||

+ | |||

+ | ===Proofs=== | ||

+ | If we draw <math>AC</math>, we find that <math>[ABCD]=\frac{ab\sin B}{2}+\frac{cd\sin D}{2}=\frac{ab\sin B+cd\sin D}{2}</math>. Since <math>B+D=180^\circ</math>, <math>\sin B=\sin D</math>. Hence, <math>[ABCD]=\frac{\sin B(ab+cd)}{2}</math>. Multiplying by 2 and squaring, we get: | ||

+ | <cmath>4[ABCD]^2=\sin^2 B(ab+cd)^2</cmath> | ||

+ | Substituting <math>\sin^2B=1-\cos^2B</math> results in | ||

+ | <cmath>4[ABCD]^2=(1-\cos^2B)(ab+cd)^2=(ab+cd)^2-\cos^2B(ab+cd)^2</cmath> | ||

+ | By the Law of Cosines, <math>a^2+b^2-2ab\cos B=c^2+d^2-2cd\cos D</math>. <math>\cos B=-\cos D</math>, so a little rearranging gives | ||

+ | <cmath>2\cos B(ab+cd)=a^2+b^2-c^2-d^2</cmath> | ||

+ | <cmath>4[ABCD]^2=(ab+cd)^2-\frac{1}{4}(a^2+b^2-c^2-d^2)^2</cmath> | ||

+ | <cmath>16[ABCD]^2=4(ab+cd)^2-(a^2+b^2-c^2-d^2)^2</cmath> | ||

+ | <cmath>16[ABCD]^2=(2(ab+cd)+(a^2+b^2-c^2-d^2))(2(ab+cd)-(a^2+b^2-c^2-d^2))</cmath> | ||

+ | <cmath>16[ABCD]^2=(a^2+2ab+b^2-c^2+2cd-d^2)(-a^2+2ab-b^2+c^2+2cd+d^2)</cmath> | ||

+ | <cmath>16[ABCD]^2=((a+b)^2-(c-d)^2)((c+d)^2-(a-b)^2)</cmath> | ||

+ | <cmath>16[ABCD]^2=(a+b+c-d)(a+b-c+d)(c+d+a-b)(c+d-a+b)</cmath> | ||

+ | <cmath>16[ABCD]^2=16(s-a)(s-b)(s-c)(s-d)</cmath> | ||

+ | <cmath>[ABCD]=\sqrt{(s-a)(s-b)(s-c)(s-d)}</cmath> | ||

== Similar formulas == | == Similar formulas == | ||

Line 15: | Line 32: | ||

Brahmagupta's formula reduces to [[Heron's formula]] by setting the side length <math>{d}=0</math>. | Brahmagupta's formula reduces to [[Heron's formula]] by setting the side length <math>{d}=0</math>. | ||

− | {{ | + | A similar formula which Brahmagupta derived for the area of a general quadrilateral is |

+ | <cmath>[ABCD]^2=(s-a)(s-b)(s-c)(s-d)-abcd\cos^2\left({\frac{B+D}{2}}\right)</cmath> | ||

+ | <cmath>[ABCD]=\sqrt{(s-a)(s-b)(s-c)(s-d)-abcd\cos^2\left({\frac{B+D}{2}}\right)}</cmath> | ||

+ | where <math>s=\frac{a+b+c+d}{2}</math> is the [[semiperimeter]] of the quadrilateral. What happens when the quadrilateral is cyclic? | ||

+ | |||

+ | == Problems == | ||

+ | === Intermediate === | ||

+ | *<math>ABCD</math> is a cyclic quadrilateral that has an inscribed circle. The diagonals of <math>ABCD</math> intersect at <math>P</math>. If <math>AB = 1, CD = 4,</math> and <math>BP : DP = 3 : 8,</math> then the area of the inscribed circle of <math>ABCD</math> can be expressed as <math>\frac{p\pi}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Determine <math>p + q</math>. ([[Mock AIME 3 Pre 2005 Problems/Problem 7|Source]]) | ||

+ | |||

+ | |||

[[Category:Geometry]] | [[Category:Geometry]] | ||

− | [[Category: | + | [[Category:Theorems]] |

## Latest revision as of 14:23, 30 March 2018

**Brahmagupta's Formula** is a formula for determining the area of a cyclic quadrilateral given only the four side lengths.

## Definition

Given a cyclic quadrilateral with side lengths , , , , the area can be found as:

where is the semiperimeter of the quadrilateral.

### Proofs

If we draw , we find that . Since , . Hence, . Multiplying by 2 and squaring, we get: Substituting results in By the Law of Cosines, . , so a little rearranging gives

## Similar formulas

Bretschneider's formula gives a formula for the area of a non-cyclic quadrilateral given only the side lengths; applying Ptolemy's Theorem to Bretschneider's formula reduces it to Brahmagupta's formula.

Brahmagupta's formula reduces to Heron's formula by setting the side length .

A similar formula which Brahmagupta derived for the area of a general quadrilateral is where is the semiperimeter of the quadrilateral. What happens when the quadrilateral is cyclic?

## Problems

### Intermediate

- is a cyclic quadrilateral that has an inscribed circle. The diagonals of intersect at . If and then the area of the inscribed circle of can be expressed as , where and are relatively prime positive integers. Determine . (Source)